Conda
positional arguments: command clean Remove unused packages and caches. compare Compare packages between conda environments. config Modify configuration values in .condarc. This is modeled after the git config command. Writes to the user .condarc file (/home/j/.condarc) by default. create Create a new conda environment from a list of specified packages. info Display information about current conda install. init Initialize conda for shell interaction. install Installs a list of packages into a specified conda environment. list List linked packages in a conda environment. package Low-level conda package utility. (EXPERIMENTAL) remove Remove a list of packages from a specified conda environment. rename Renames an existing environment run Run an executable in a conda environment. search Search for packages and display associated information. The input is a MatchSpec, a query language for conda packages. See examples below. uninstall Alias for conda remove. update Updates conda packages to the latest compatible version. upgrade Alias for conda update. notices Retrieves latest channel notifications.
optional arguments: -h, --help Show this help message and exit. -V, --version Show the conda version number and exit.
conda commands available from other packages: env
-c
: channel, it specifies which repository or source Conda should use to find the package-n
: name, it specifies the name of the new environment.conda-forge
is a community-maintained Conda channel that provides up-to-date and well-maintained packages.conda info
: if Conda is correctly installed, this will display information about your installationconda env list
: check available Conda environments- disable auto activate base env:
conda config --set auto_activate_base false
thensource ~/.bashrc
Create
conda create --name myenv python=3.8
Download / install
download -> chmod +x path -> run it -> install
Then add to the path:
nano ~/.bashrc
-> export PATH="$HOME/anaconda3/bin:$PATH"
-> source ~/.bashrc
Remove the environment
conda remove --name myenv --all
conda env remove --name myenv
Remove cache (not packages in using)
conda remove --all
remove cache, it won’t affect the existing environments.
Delete env
conda remove --name xxxxxx --all
List all existed env
conda env list
Check if specific package is installed
conda list | grep -E "diffusers"
log:
conda install -y -c pytorch pytorch=2.0.0 torchaudio=2.0.0 torchvision=0.15.0
this is done, with one error: Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Delete specific package
conda remove torch
- notice: if something suddenly broken in your conda environment, just remove that thing, and re-install. Debug will take too long time
disable conda base environment
disable conda base environment not be activated on startup:
conda config --set auto_activate_base false
Delete all conda things from the computer
check rpm
rpm -qa | grep conda
: show all conda relative things, remove them, for example :
sudo dnf remove python3-conda python3-conda-package-handling
check PATH:
export $PATH
, check if anything conda relative in the output
delete others
rm -rf ~/.conda ~/.anaconda ~/.jupyter ~/.ipython
clean DNF Metadata (option)
sudo dnf clean all
verify if conda all gone
conda --version
export CUDA_HOME=/usr/local/cudaexport PATH=$CUDA_HOME/bin:$PATHexport LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
Make sure we are install under conda
conda install python=3.10
and run
which python
, which pip
it should show something relative conda
if it is not under conda path, then something wrong
**Always use conda if available, for package that not available under conda, use pip
After installed a package, can check in the jupyter notebook:
import sklearnprint(sklearn.__file__)
output:
/home/xxx/anaconda3/envs/data_analytic/lib/python3.10/site-packages/sklearn/__init__.py
kernel not install
use conda install jupyter
can solve. sometimes this issue happen from no where.
Jupyter notebook select Conda env
logic: create conda env —> under this env, create a kernel that jupyter notebook can use —> inside jupyter notebook, select and using that kernel
first pip install ipykernel
create a kernel
run python -m ipykernel install --user --name=stable_diffusion2 --display-name "Python (stable_diffusion2)"
how can i know if this kernel is point to correct env
cat /home/user/.local/share/jupyter/kernels/stable_diffusion2/kernel.json
you can see something like
{ "argv": [ "/home/user/anaconda3/envs/stable_diffusion2/bin/python", "-m", "ipykernel_launcher", "-f", "{connection_file}" ], "display_name": "Python (stable_diffusion2)", "language": "python", "metadata": { "debugger": true }
so you can see it is pointing to my specific conda environment
1. python -m ipykernel install
python -m
: Runs a Python module as a script.ipykernel install
: Registers a new Jupyter Kernel, which is an execution environment for Jupyter Notebook.
2. --user
- Installs the kernel only for the current user, not system-wide.
- Prevents permission issues when running without admin/root access.
3. --name=sd-env
- Internal name for the kernel (used by Jupyter to identify it).
- Should match your Conda environment name (
sd-env
in this case).
4. --display-name "Python (sd-env)"
- Human-readable name that appears in Jupyter Notebook’s kernel selection.
- This makes it easy to recognize when choosing a kernel in VS Code or Jupyter.
check kernel list : jupyter kernelspec list
List all configuration in current conda
-
List packages and versions in current conda environment
conda list
-
Export all configurations including dependencies:
conda env export
conda env export > environment.yml
-
Rebuild the environment according to this yml file
conda env create -f environment.yml